
Quasiperiodic surface Maryland models on quantum graphs

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 265304

(http://iopscience.iop.org/1751-8121/42/26/265304)

Download details:

IP Address: 171.66.16.154

The article was downloaded on 03/06/2010 at 07:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/26
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 265304 (13pp) doi:10.1088/1751-8113/42/26/265304

Quasiperiodic surface Maryland models on quantum
graphs

Konstantin Pankrashkin
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Abstract
We study quantum graphs corresponding to isotropic lattices with quasiperiodic
coupling constants given by the same expressions as the coefficients of the
discrete surface Maryland model. The absolutely continuous and the pure
point spectra are described. It is shown that the transition between them is
governed by the Hill operator corresponding to the edge potential.
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Mathematics Subject Classification: 81Q10, 47B39, 47N50, 82B44

1. Introduction

The present paper is devoted to the spectral analysis of a special class of quasiperiodic
interactions on quantum graphs. We are going to show how some topics of the theory
of discrete quasiperiodic operators can be transferred to the quantum graph case using the
operator-theoretic tools.

Let us introduce first a class of discrete quasiperiodic potentials. Take a positive integer
d, pick d1 ∈ {0, . . . , d} and set d2 := d − d1. In what follows we represent any m ∈ Z

d as
m = (m1, m2) with m1 ∈ Z

d1 and m2 ∈ Z
d2 . Pick now g �= 0,ω ∈ R

d2 , ϕ ∈ R with

ϕ �= ωm2 mod 1
2 , m2 ∈ Z

d2 (1)

and set

α(m) := g tan π(ωm2 + ϕ), m ∈ Z
d . (2)

Consider also the discrete Laplacian � in �2(Zd) given by

�df (m) =
∑

m′:|m−m′ |=1

f (m′).

The operators of the form H = �d + α are usually referred to as Maryland-type models.
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The paper [12] dealt with the case d = d2 = 1 which provided the first explicit example
of a difference quasiperiodic operator having a dense pure point spectrum everywhere;
this operator is often referred to as the classical Maryland model. Later the class of such
Hamiltonians was considerably extended in several directions, e.g. to the multidimensional
case and to more general unperturbed operators, see e.g. [1, 9].

The papers [2, 3, 13] studied the situation 0 < d1 < d; in this case the potential
is supported by a subspace, and the corresponding operator is referred to as the surface
Maryland model. The quasiperiodic perturbation leaves unchanged the absolutely continuous
spectrum of the unperturbed operator (i.e. of the Laplacian) but produces (under some
incommensurability conditions) a dense pure point spectrum on the rest of the real line.

On the other hand, discrete operators are closely related to the quantum graph models, i.e.
differential operators acting on geometric configurations consisting of segments, see e.g.
[6, 11, 14, 15]. The aim of the present paper is to provide an analog of the surface
Maryland model for quantum graphs and to study its spectral properties. The work is a
natural continuation of our previous paper [18] where we considered the full-space Maryland
quantum graph model (d1 = 0).

We are studying an isotopic quantum graph lattice, and the above coefficients α(m)

determine the strengths of the δ-potentials placed at the corresponding vertices. We note
that coupling constants at the vertices may be used to approximate rather general Schrödinger
operators, see e.g. [8, 16]. The spectral problem for the quantum graph can then be reduced to a
nonlinear spectral problem for an energy-dependent surface Maryland model using the theory
of self-adjoint extensions [5]. The reduced operator is then studied using a combination of the
machinery of Weyl functions [5] and the constructions of [2, 9] for the corresponding discrete
operators. We describe the regions of the pure point and the absolutely continuous spectra
and show that their location is controlled by the one-dimensional Hill operator associated with
the potential on the edges. We believe that the problem is also of interest for the theory of
self-adjoint extensions, as it provides an explicit example of a transition between different
spectral types described using the Weyl functions, which is an extremely difficult problem in
the general setting [4].

2. Model operator and main results

As mentioned in section 1, we are studying the simple quantum graph lattices. The vertex set
is Z

d , and the edges are between nearest neighbors. The length of each edge is 1, and each
edge carries the differential operator −d2/dx2 + q with the same real L2-potential q, and the
boundary conditions at the vertices are of the δ-type with the coupling constants given by (2).
Let us introduce a notation to handle this situation in detail.

The set of graph vertices is Z
d , d � 2 (i.e. we explicitly need a multidimensional lattice).

By hj , j = 1, . . . , d, we denote the standard basis vectors of Z
d . For technical reasons we

need an orientation on each edge. Two vertices m, m′ are connected by an oriented edge
m → m′ iff m′ = m + hj for some j ∈ {1, . . . , d}; this edge is denoted as (m, j) and one
says that m is its initial vertex and m′ ≡ m + hj is its terminal vertex.

Replace now each edge (m, j) by a copy of the segment [0, 1] in such a way that 0 is
identified with m and 1 is identified with m + hj . In this way we arrive at a certain topological
set carrying a natural metric structure. The quantum state space of the system is

H :=
⊕

(m,j)∈Zd×{1,...,d}
Hm,j , Hm,j = L2[0, 1],

and the vectors f ∈ H will be denoted as f = (fm,j ), fm,j ∈ Hm,j , m ∈ Z
d , j = 1, . . . , d.
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To introduce a Schrödinger operator acting in H let us fix a real-valued potential
q ∈ L2[0, 1] and some real constants α(m), m ∈ Z

d . Set A := diag(α(m)); this is a
self-adjoint operator in �2(Zd). Denote by HA the operator acting as

(fm,j ) �→ (−f ′′
m,j + qfm,j ), (3a)

on functions f = (fm,j ) ∈ ⊕
m,j H 2[0, 1] satisfying the following boundary conditions:

fm,j (0) = fm−hk ,k(1) =: f (m), j, k = 1, . . . , d, m ∈ Z
d (3b)

(which means the continuity at all vertices) and

f ′(m) = α(m)f (m), m ∈ Z
d , (3c)

where

f ′(m) :=
d∑

j=1

f ′
m,j (0) −

d∑
j=1

f ′
m−hj ,j

(1). (3d)

The constants α(m) are usually referred to as Kirchhoff coupling constants and interpreted
as the strengths of zero-range impurity potentials placed at the corresponding vertices, cf [6].
The zero coupling constants correspond hence to the ideal couplings.

We are going to study the above operator HA for the coupling constants α(m) given by
(2) where 1 � d1 < d. This operator will be noted simply by H.

To formulate the results we need some additional constructions. Denote by s and c the
solutions to −y ′′ + qy = zy satisfying s(0; z) = c′(0; z) = 0 and s ′(0; z) = c(0; z) = 1, z ∈
C, and set η(z) := s(1; z) + c′(1; z). Consider an auxiliary one-dimensional Hill operator

L = − d2

dx2
+ Q, Q(x + n) = q(x), (x, n) ∈ [0, 1) × Z. (4)

It is known that spec L = η−1([−2, 2]) and the spectrum is absolutely continuous and has a
band structure, i.e. is a locally finite union of segments.

The following theorem summarizes propositions 5, 6, 10 and 13 below and contains the
main results.

Theorem 1. For any ω and ϕ one has spec L ⊂ spec H . If the components of ω are rationally
independent, then the spectrum of H in η−1((−2, 2)) is purely absolutely continuous. If ω
satisfies additionally the Diophantine condition

there are C, β > 0 with |ωm2 − r| � C|m2|−β for all m2 ∈ Z
d2\{0}, r ∈ Z,

(5)

then the spectrum of H covers the whole real line and is pure point outside spec L.

As easily seen, the absolutely continuous spectrum of H just coincides with the spectrum
of L (which is independent of the quasiperiodic perturbation), and, under the additional
assumptions, the rest of the spectrum is pure point. It is interesting to mention that a similar
interlaced spectrum was found recently in a completely different model involving singular
potentials [7].

3. Resolvents for quantum graphs

Denote by S the operator acting as (3a) on the functions f satisfying only the boundary
conditions (3b). On the domain of S one can define linear maps

f �→ 
f := (f (m))m∈Zd ∈ �2(Zd), f �→ 
′f := (f ′(m))m∈Zd ∈ �2(Zd).

3
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By direct calculation one can see that for any f, g ∈ dom S there holds 〈f, Sg〉 − 〈Sf, g〉 =
〈
f, 
′g〉 − 〈
′f, 
g〉 and that for any ξ, ξ ′ ∈ Z

d there exists f ∈ dom S with 
f = ξ and

′f = ξ ′. From the operator-theoretic point of view (Zd , 
, 
′) is a boundary triple for S and
hence a powerful machinery based on the Krein resolvent formula applies [5].

Note that the restriction of S to the vectors f satisfying 
f = 0 is just the direct sum of
the operators −d2/dx2 + q with the Dirichlet boundary conditions over all the segments. The
spectrum of H 0 is a discrete set and will be referred to as the Dirichlet spectrum of the graph.
In its turn, the operator H is the restriction of S to the vectors f satisfying 
′f = A
f where
A = diag(α(m)).

Let z /∈ spec H 0. For g ∈ G denote by γ (z)g the unique solution to the abstract boundary
value problem (S − z)f = 0 with 
f = g. In our case one can easily calculate

(γ (z)ξ)m,j (t) = 1

s(1; z)
(ξ(m + hj )s(t; z) + ξ(m)(s(1; z)c(t; z)

− c(1; z)s(t; z))), t ∈ [0, 1], (m, j) ∈ Z
d × {1, . . . , d}.

The map γ (z) is called the γ -field associated with the boundary triple. The corresponding
Weyl function M(z) is defined by M(z) := 
′γ (z), i.e.

M(z) := a(z)(�d − dη(z)), a(z) := 1

s(1; z)
. (6)

There exists the following relation between the operators H and H 0, see [5, section 1] for
more details.

Proposition 2. For z /∈ spec H 0 ∪ spec H the operator M(z) − A acting on G has a bounded
inverse defined everywhere, and

(H − z)−1 = (H 0 − z)−1 − γ (z)(M(z) − A)−1γ (z̄)∗. (7)

One has

spec H \ spec H 0 = {z ∈ R \ spec H 0 : 0 ∈ spec(M(z) − A)},
and for z ∈ R \ spec H 0 there holds ker(H − z) = γ (z) ker(M(z) − A). The maps γ and
M depend analytically on their argument (outside of spec H 0), M(z) satisfies M(z̄) = M(z)∗

and

for any non-real z there is cz > 0 with
Im M(z)

Im z
� cz and (8)

M ′(λ) = γ (λ)∗γ (λ) > 0 for λ ∈ R\ spec H 0. (9)

Furthermore,

γ (z)∗f = 0 for any f ∈ ran γ (z)⊥. (10)

We will also use a similar formula relating the resolvents of H and H0 (i.e. the
operator corresponding to the zero coupling constants at all the vertices). Note that the
operator H0 formally corresponds to the case d1 = d. As shown in [17], there holds
spec H0 = spec L ∪ spec H0. Using theorem 1.32 in [5] one arrives at

Proposition 3. Denote by P the operator Z
d � (m1, m2) �→ m2 ∈ Z

d2 and introduce the
operators ν(z) = γ (z)P considered as a maps from Z

d2 to H as well as B = −PA−1P and
N(z) = −PM(z)−1P considered as operators in Z

d2 . Then there holds

(H0 − z)−1 − (H − z)−1 = ν(z)(N(z) − B)−1ν∗(z̄). (11)
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The set spec H \ spec H0 consists exactly of z ∈ R \ spec H0 such that 0 ∈ spec(N(z) − B),
and the same correspondence holds for the eigenvalues, i.e. z ∈ R \ spec H 0 there holds
ker(H − z) = ν(z) ker(N(z) − B).

For z /∈ spec H0, the maps ν(z) and N(z) satisfy the same properties listed in
proposition 2 as γ (z) and M(z).

By proposition 2, outside of the discrete set spec H 0, the spectrum of H consists of the
real z satisfying 0 ∈ spec(M(z) − A) or, taking into account the explicit form (6),

0 ∈ spec(a(z)(�d − dη(z)) − A).

Note that the operator on the right-hand side is exactly the Maryland-type model mentioned
in section 1. In [2] the following was proved.

Proposition 4. For any b �= 0 the operator G := �d + βA has the following spectral
properties:

(a) [−2d, 2d] ⊂ spec G;
(b) if the components of ω are rationally independent, then the spectrum of G in the interval

(−2d, 2d) is purely absolutely continuous;
(c) for Diophantine ω (see theorem 1) the rest of the real line is covered by the dense pure

point spectrum.

Transferring this proposition to the operator M(z) − A one obtains

• 0 ∈ spec(M(z) − A) for |η(z)| � 2;
• if the components of ω are rationally independent, then the spectrum of M(z) − A in the

interval a(z)(−2d − dη(z), 2d − dη(z)) is purely absolutely continuous;
• for Diophantine ω the rest of the real line is covered by the dense pure point spectrum.

Recall that the set |η(z)| � 2 coincides with the spectrum of L. Therefore, using the first of
the above three properties and proposition 2 one immediately obtains

Proposition 5. spec L ⊂ spec H .

While for each fixed z the operator M(z) is of Maryland type, the dependence on z

is nonlinear. Furthermore, the proposition 2 does not allow to conclude about the spectral
nature of H from that of M(z) − A (see [4] for a discussion of this correspondence within the
framework of the general theory of self-adjoint extensions); as for now, such a relationship
is only available under special conditions for the configuration and the coupling constants [5]
which only hold in the case d1 = d, i.e. for the zero coupling constants; the case d1 < d

we are interested in is not covered. Hence to obtain a satisfactory description of the spectral
properties of H we need to repeat some constructions from [2, 9] and to combine them with
the resolvent formulae given in propositions 2 and 3. For the study of the pure point spectrum
for the full-space Maryland model on quantum graphs, this idea was used already in [18] and
earlier in [10] for point interaction Hamiltonians in the Euclidean space.

4. The absolutely continuous spectrum

In this section we will first repeat some constructions for [2, 3] for the operator M(z) taking
into account the nonlinear dependence on the spectral parameter and then insert this into the
resolvent formula of proposition 2.

5
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Below we will use actively the Fourier transform. Denote S
1 := {z ∈ C, |z| = 1} and

T
n := S

1 × . . . × S
1︸ ︷︷ ︸

n times

⊂ C
n. For θ = (θ1, . . . , θn) ⊂ C

n and p = (p1, . . . , pn) ∈ Z
n we write

θp := θ
p1
1 . . . θ

pn
n , and in this context k ∈ Z will be identified with the vector (k, . . . , k) ∈ Z

n,
i.e. θ−1 := θ−1

1 . . . θ−1
l etc. We denote by Fn the Fourier transform carrying �2(Zn) to L2(Tn),

Fnψ(θ) =
∑
n∈Zn

ψ(n)θn, F−1
n f (n) = 1

(2π i)n

∫
Tn

f (θ)θ−n−1 dθ.

Each θ ∈ T
d will be represented as θ = (θ1,θ2) with θ1 ∈ T

d1 and θ2 ∈ T
d2 .

Without loss of generality assume g > 0 (otherwise one can change the signs of ω and ϕ).
Consider the operator L(z) := M(z) − A = M(z) + PvP , where v is an operator in �2(Zd2)

acting as vf (m2) = −g tan(ωm2 + ϕ)f (m2), m2 ∈ Z
d2 . For Im z �= 0 the operator M(z) is

invertible (as its imaginary part is non-degenerate) and one has

L(z)−1 = M(z)−1 − M(z)−1T (z)M(z)−1, T (z) = v − T (z)M(z)−1v.

Obviously one can write T (z) = P t(z)P where the operator t (z) acting in �2(Zd2) satisfies
t (z) = v + t (z)N(z)v. Formally one has t (z) = v(1 − N(z)v)−1 and it is needed to show that
the operator in question is really invertible.

Let U be the unitary operator in �2(Zd2) defined by the relation

(uf )(m2) = e−2π iωm2f (m2),

then, denoting χ := e−2π iϕ , one can write

v = −g

i

1 − χU

1 + χU
.

As Im N(z) � 0 for Im z � 0, the operator i + gN(z) is invertible for such z. Hence, for
Im z � 0 after a simple algebra one obtains

1 − N(z)v = (gN(z) + i)(1 − b(z)χU)(i(1 + χU))−1

where b(z) = (gN(z) − i)(i + gN(z))−1. In order to represent the inverse operator in terms of
the Neumann series it is sufficient to show that |b(z)| < 1 for some z. To see this, it is useful
to pass to the Fourier representation.

For λ ∈ C denote Gd(λ) := (�d − λ)−1. Recall that in the Fourier representation �d

becomes the multiplication by the function �d(θ) = ∑
j

(
θj +θ−1

j

)
, hence the matrix of Gd(λ)

is given by

Gd(m − m′; λ) = 1

(2π i)d

∫
Td

θ−(m−m′)−1 dθ

�d(θ) − λ
.

On the other hand, the matrix of the operator N(z) is N(m2 −m′
2; z) = −a(z)−1Gd((0, m2)−

(0, m′
2); dη(z)), hence

N(m2 − m′
2; z) = −a(z)−1 1

(2π i)d

∫
Td2

θ
−(m2−m′

2)−1
2 dθ2

∫
Td1

θ−1
1 dθ1

�d(θ) − dη(z)

= −a(z)−1 1

(2π i)d2

∫
Td2

Gd1(0; dη(z) − �d2(θ2))θ
−(m2−m′

2)−1
2 dθ2. (12)

In particular, it is clear that in the Fourier representation N(z) is the multiplication by the
function

N(θ2; z) = −a(z)−1Gd1(0; dη(z) − �d2(θ2)). (13)

6
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As Im N(z) > 0 for Im z > 0, the imaginary part Im N(θ2; z) is positive for such z. The
operator b(z) in the Fourier representation becomes the multiplication by the function

b(θ2, z) = gN(θ2, z) − i

gN(θ2, z) + i
,

hence ‖b(z)‖ ≡ supθ2
|b(θ2, z)| < 1 for Im z > 0. Therefore, one can represent

t (z) = v(1 − N(z)v)−1

= −g(1 − χU)(1 − b(z)χU)−1(gN(z) + i)−1

= −g(1 − χU)

∞∑
m=0

χm(b(z)U)m

= −g(gN(z) + i)−1

(
1 − 2i

∞∑
m=1

(gN(z) + i)−1U(b(z)U)m−1

)
(14)

and one has

(M(z) − A)−1 = M(z)−1 − M(z)−1P t(z)PM(z)−1.

After these preparations we can prove

Proposition 6. Denote I := η−1((−2, 2)). If the vector ω has rationally independent
components, then the operator H has only absolutely continuous spectrum in I.

Proof. According to the general spectral theory we need to show that there exists a dense
subset L of H such that the limit limε→0+ Im〈f, (H − λ − iε)−1f 〉 exists and is finite for all
g ∈ L and λ ∈ I.

Represent

H = H0 + H1, H0 :=
⎛⎝ ⋃

Im z �=0

γ (z)(�2(Zd))

⎞⎠⊥

, H1 := H⊥
0 ; (15)

in other words, H1 is the closure of the linear hull of the set {γ (z)ϕ : Im z �= 0, ϕ ∈ �2(Zd)}.
By the Krein resolvent formula, for any f ∈ H0 and any z with Im z �= 0 one

has γ ∗(z)f = 0. Hence, by (7), there holds (H − z)−1f = (H 0−z)−1f , hence
limε→0+ Im〈f, (H −λ− iε)−1f 〉 = 0, because (H 0 −λ)−1 is a bounded self-adjoint operator.

Consider the vectors f = γ (ζ )h for h = (M(ζ ) − A)−1ξ, Im ζ �= 0. These vectors form
a dense subset in H1 as ξ runs over a dense subset of �2(Zd). By elementary calculations (see
e.g. section 3 in [5]) one can write

(H − λ − iε)−1f = 1

ζ − λ − iε
(f − γ (λ + iε)(M(λ + iε) − A)−1ξ).

Hence it is sufficient to show that limε→0+ Im〈δm, (M(λ + iε) − A)−1δm〉 exists and is finite
for any m ∈ Z

d . In view of the series representation for (M(z) − A)−1 it is sufficient to
show that the series converges for real z ∈ I and not only for Im z > 0. On the other hand,
(M(z) − A)−1 = a(z)−1(�d − dη(z) − a(z)−1A)−1, and it is shown in [2, theorem 3.1] that
Im〈δm, (�d − c − bA)−1δm〉 exists and is finite for any c ∈ (−2d, 2d) and any b ∈ R. This
completes the proof. �

7
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5. The pure point spectrum

In this section we will use the second version of the resolvent formula, equation (11). Hence
for z /∈ spec H0 we have the equivalence z ∈ spec H iff 0 ∈ spec(N(z) − B). Here N
is a translationally invariant operator in �2(Zd2) whose matrix elements are given by (12),
and the operator B, as already mentioned below, in the multiplication by the sequence
g−1 tan π(ωm2 + ϕ + 1/2). It is useful to set g′ = −g,ω′ := −ω, ϕ′ := −ϕ − 1/2,
then B becomes a multiplication by −g′ tan π(ω′m2 + ϕ′) with g′ > 0.

To alleviate the notation, below we will write d instead of d2 and drop the indices for
g′,ω′ and ϕ′ as this does not lead to confusions.

In [9] the operators of the following form were considered: G = G0 + B, where G0 is a
translationally invariant operator in �2(Zd) given by

Gξ(m) =
∑

m′∈Zd

a(m − m′)ξ(m′),

with the coefficients satisfying an exponential bound

|a(m)| � c1 exp(−c2|m|), c1, c2 > 0, for all m ∈ Z
d .

It was shown that the spectrum of such operators covers the whole real line and is pure point.
For each fixed z /∈ spec H0 the reduced operator N(z) − B is of the above type and hence has
a pure point spectrum dense everywhere. On the other hand, one is not able to transfer these
results directly to the quantum graph Hamiltonian H using just the machinery of self-adjoint
extensions. Hence, like in the previous section, we need to repeat some constructions of [9]
and then combine them with the resolvent formula of proposition 3. Note that the constructions
below appear to be almost identical to those of [18] where we studied the full space quantum
graph Maryland model (but with a different operator N) because of the similar structure of the
resolvent.

Introduce the operators

D(z) := (N(z) − ig)−1, C(z) := −(N(z) + ig)(N(z) − ig)−1,

they are defined at least for z with Re z /∈ spec H0 and |Im z| sufficiently small. One can write
for such z the identity

N(z) − B = D(z)−1(1 − χC(z)U)(1 + χU)−1. (16)

Recall that under the Fourier transform N(z) becomes the multiplication by the function
N(θ, z) given by (13), the operators D(z) and C(z) become the multiplications by D(θ, z) :=
(N(θ, z)− ig)−1 by C(θ, z) := −(N(θ, z)+ig)(N(θ, z)− ig)−1, respectively, and U becomes
a shift operator, Uk(θ) = k(e−2π iω1θ1, . . . , e−2π iωd θd).

Consider an arbitrary segment [a, b] ⊂ R \ spec H0. Recall that the spectrum of H0

coincides with the spectrum of L up to the discrete set spec H 0. Equation (8), the analyticity
of γ , and the self-adjointness of N(z) for real z imply the existence of δ′ > 0 such that
‖Im N(z)‖ � g/2 for z ∈ Z := {z ∈ C : |Im z| � δ′, Re z ∈ [a, b]}. At the same time,
this means that |Im N(θ, z)| � g/2 for z ∈ Z. As follows from the integral representation,
N(θ, z) can be continued to an analytic function in Z × �,� := {θ ⊂ C

d : r < |θj | <

R}, 0 < r < 1 < R < ∞. Choosing r and R sufficiently close to 1 one immediately sees that
the function

C(θ, z) := g2 − (Im N(θ, z))2 − (ReN(θ, z))2 − 2igReN(θ, z)

|N(θ, z) − ig|2
does not take values in (−∞, 0) for (θ, z) ∈ � × Z. Therefore, the function f (θ, z) :=
log C(θ, z) is well defined and analytic in � × Z, where log denotes the principal branch of

8
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the logarithm. The Diophantine property (5) implies (see [9, lemma 3.2]) that the operator
1 − U is a bijection on the set of functions v analytic in � with∫

Td

v(θ)θ−1 dθ = 0.

Hence the function t (θ, z) := (1 − U)−1(f (θ, z) − f0(z)) is well defined and analytic in
Z × �, where

f0(z) := 1

(2π i)d

∫
Td

f (θ, z)θ−1 dθ. (17)

Lemma 7. The function f0 is analytic in Z,

Re f0(z) < 0 for Im z > 0, (18)

Ref (θ, z) = Re t (θ, z) = Re f0(z) = 0 for Im z = 0. (19)

For real λ one has f0(λ) = 2iσ(λ), where

σ(λ) = 1

(2π i)d

∫
Td

arctan
N(θ, λ)

g
θ−1 dθ.

The function σ is real valued, strictly increasing, and continuously differentiable on [a, b].

Proof. The analyticity of f0 follows from its integral representation. Equation (18) follows
from (17) if one takes into account the inequalities Im N(θ, z) > 0 for Im z > 0 and
Re log z < 0 for |z| < 1. Equalities (18) follows from (17) and the real-valuedness of N(θ, z)

for real z.
By elementary calculations, for x ∈ R and y > 0 one has

g1(x) := 1

2i
log

iy + x

iy − x
≡ arctan

x

y
=: g2(x). (20)

In fact, this follows from

g′
1(x) = g′

2(x) = y

x2 + y2
(21)

and g1(0) = g2(0) = 0. Equation (20) obviously implies f0(λ) = 2iσ(λ) for λ ∈ R.
Furthermore, as follows from (21),

σ ′(λ) = 1

(2π i)d

∫
Td

gN ′
λ(θ, λ)

N(θ, λ)2 + g2
θ−1 dθ,

and, by (9), σ ′(λ) > 0. �

An immediate corollary of the analyticity of f0 and of (18) is

Lemma 8. There exists ε0 > 0 such that |ef0(λ)ξ − 1| � 2| ef0(λ+iε)ξ − 1| for all ξ ∈ S
1,

λ ∈ [a, b], and ε ∈ [0, ε0].

Denote by t (z) and f (z) the multiplication operators by t (θ, z) and f (θ, z) in L2(Td),
respectively. By definition of t (θ, z) for any xi ∈ L2(Td)

et (z) ef0(z)U e−t (z)ξ(θ) = et (θ,z)ef0(θ,z) exp( − t (z, e−2π iω1θ1, . . . , e−2π iωd θd))Uϕ(θ)

= exp(t (θ, z) − Ut(θ, z) + f0(θ, z))Uϕ(θ, z)

= ef (z)Uϕ(θ) = C(z)Uϕ(θ). (22)

9
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Therefore, one can rewrite equation (16) as

N(z) − B = D(z)−1 et (z)(1 − ef0(z)χU) e−t (z)(1 + χU)−1. (23)

Proposition 9. The set of the eigenvalues of H in [a, b] is dense and coincides with the set of
solutions λ to

σ(λ) = π(ωm + ϕ) mod π, m ∈ Z
d . (24)

Each of these eigenvalues is simple, and for any fixed m ∈ Z
d equation (24) has at most one

solution λ(m), and λ(m) �= λ(m′) for m �= m′.

Proof. As follows from proposition 2 and the resolvent formula (11), the eigenvalues λ of H
outside spec H0 are determined by the condition ker(N(λ) − B) �= 0, and their multiplicity
coincides with the dimension of the corresponding kernels. Equation (22) shows that the
condition (N(λ) − B)u = 0 is equivalent to (1 − ef0(λ)χU) e−t (λ)(1 + χU)−1u = 0 or,
denoting v := e−t (λ)(1 + χU)−1u, (1 − ef0(λ)χU)v = 0, which can be rewritten as

χUv = e−f0(λ)v, v �= 0. (25)

As χU has the simple eigenvalues e−2π i(ωm+ϕ), m ∈ Z
d , and the corresponding eigenvectors

form a basis, equation (25) implies (24) if one takes into account the identity f0(λ) = 2iσ(λ)

proved in lemma 7. The rest follows from the monotonicity of σ , the inclusion ran σ ⊂
(−π/2, π/2), and the arithmetic properties of ω and ϕ, see (1) and (5). �

As [a, b] was an arbitrary interval from R \ spec H0, one has an immediate corollary.

Proposition 10. The pure point spectrum of H is dense in R \ spec H0.

Now it remains to show that the spectrum of H in the interval considered is pure point.
Take some α > 0. For any δ > 0 we denote

S
1
δ =

⋃
m∈Zd

{ξ ∈ S
1 : | Arg ξ − Arg e2π iωm| � δ(1 + |m|)−d−α}, S̃

1
δ := S

1 \ S
1
δ .

Clearly, there holds

|1 − ξ e−2π iωm| � 2π−1δ(1 + |m|)−d−α, ξ ∈ S̃
1
δ , m ∈ Z

d . (26)

Let � ⊂ [a, b] be an interval whose ends are not eigenvalues of H. Consider the mapping
h : λ �→ χ ef0(λ). By lemma 7, h is a diffeomorphism between � and h(�). By proposition 9
one has h(λ(m)) = e2π iωm. Take an arbitrary δ > 0 and denote

�δ := � ∩ h−1
(
S

1
δ

)
, �̃δ := � ∩ h−1

(̃
S

1
δ

) ≡ �\�δ.

Clearly, �δ is a countable union of intervals and the limit set
⋂

δ>0 �δ coincides with the set
of all the eigenvalues

⋃
m{λ(m)}.

Lemma 11. There exists ε0 > 0 such that for any δ > 0 and any n ∈ Z
d there exists C > 0

such that

‖(N(λ + iε) − B)−1δn‖ � C (27)

for all λ ∈ �̃δ , and ε ∈ (0, ε0).

Proof. Rewrite equation (23) in the form

(N(z) − B)−1 = (1 + χU) et (z)(1 − ef0(z)χU)−1 e−t (z)D(z).

10
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Note that the Fourier transform of δn is the function θ �→ θn. Denote �(z;θ) :=
e−t (θ,z)B(θ, z)θn. Due to the analyticity one can estimate uniformly in Z:

|ψz(m)| � C ′ e−ρ|m|, C ′, ρ > 0, ψz := F−1
d �, ‖(1 + χU) et (z)‖ � C ′.

Therefore, (27) follows from the inequality

‖(1 − ef0(λ+iε)χU)−1�‖ � C. (28)

Assume that ε0 satisfies the conditions of lemma 8, then uniformly for λ ∈ � and ε ∈ (0, ε0)

one has∣∣(F−1
d (1 − ef0(λ+iε)χU)−1�

)
(m)

∣∣ = |(1 − ef0(λ+iε)χe2π iωm)−1ψλ+iε(m)|
� 2|(1 − ef0(λ)χ e2π iωm)−1| · |ψλ+iε(m)|.

As in our case h(λ) ≡ χ ef0(λ) ∈ S̃
1
δ , due to (26) we have

|(1 − ef0(λ)χ e−2π iωm)−1| � π

2δ
(1 + |m|)d+α.

Finally,

‖(1 − ef0(λ+iε)χU)−1�‖2 =
∑

m∈Zd

∣∣(F−1
d (1 − ef0(λ+iε)χU)−1�

)
(m)

∣∣2

�
(

πC ′

δ

)2 ∑
m∈Zd

(1 + |m|)2(d+α) e−2ρ|m| < ∞,

and (28) is proved. �

Now we are able to estimate the spectral projections corresponding to H.

Lemma 12. For any f ∈ H and any δ > 0 one has

lim
ε→0+

ε

∫
�̃δ

‖(H − λ − iε)−1f ‖2 dλ = 0. (29)

Proof. Here we are going to use proposition 2. First note that due to �̃δ ⊂ R \ spec H0 one
has

lim
ε→0

ε

∫
�̃δ

‖(H0 − λ − iε)−1f ‖2dλ = 0 for any f ∈ H. (30)

Similar to (15) let us consider the decomposition

H = H0 + H1, H0 :=
⎛⎝ ⋃

Im z �=0

ν(z)(�2(Zd))

⎞⎠⊥

, H1 := H⊥
0 ;

As previously, by (11), for any f ∈ H0 and any z with Im z �= 0 one has ν∗(z)f = 0. Hence,
by (7), there holds (H − z)−1f = (H0 − z)−1 and (30) implies (29) for f ∈ H0.

Now it is sufficient to show (30) for vectors f = ν(ζ )h for h = (N(ζ ) − B)−1δm, m ∈
Z

d , Im ζ �= 0. The operators (N(ζ ) − B)−1 have dense range (coinciding with dom B),
hence the linear hull of such vectors f is dense in H1. By elementary calculations (see e.g.
section 3 in [5]) one rewrites equation (7) as

(H − λ − iε)−1f = 1

ζ − λ − iε
(f − ν(λ + iε)(N(λ + iε) − B)−1δm). (31)

11
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Due to lemma 11 we have ‖(N(λ + iε) − B)−1δm‖ � C with some C > 0, for all λ ∈ �̃δ and
sufficiently small ε, and (31) implies

‖(H − λ − iε)−1f ‖ � ‖f ‖ + C‖ν(λ + iε)‖
|ζ − λ − iε| ,

and due to the analyticity of γ , one can estimate ‖(H − λ − iε)−1f ‖ � C ′ with some C ′ > 0
for all λ ∈ �̃δ and sufficiently small ε. This obviously implies (29). �

Proposition 13. The spectrum of H outside spec L is pure point.

Proof. We are going to show that for any f ∈ H and any interval � ⊂ R\ spec H0 the spectral
measure μf associated with H and f satisfies μf (�) = μf

(
� ∩ ⋃

m{λ(m)}); this proves that
all the spectral measures are pure point.

By the Stone formula, for any set X which is a countable union of intervals whose ends
are not eigenvalues of H one has

μf (X) = lim
ε→0+

ε

π

∫
X

‖(H − λ − iε)f ‖2dλ.

Using lemma 12, for any δ > 0 we estimate

μf (�) = lim
ε→0+

ε

π

∫
�

‖(H − λ − iε)f ‖2 dλ

= lim
ε→0+

ε

π

∫
�δ

‖(H − λ − iε)f ‖2 dλ + lim
ε→0+

ε

π

∫
�̃δ

‖(H − λ − iε)f ‖2 dλ

= lim
ε→0+

ε

π

∫
�δ

‖(H − λ − iε)f ‖2 dλ = μf (�δ).

As δ is arbitrary and
⋂

δ>0 �δ = ⋃
m{λ(m)}, the theorem is proved. �
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